
Elimination Transformations

for Associative-Commutative Rewriting Systems

KUSAKARI Keiichirou1, NAKAMURA Masaki2, TOYAMA Yoshihito3

1Graduate School of Information Science, Nagoya University,
Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan.

kusakari@is.nagoya-u.ac.jp

2School of Information Science, Japan Advanced Institute of Science and Technology,
Tatsunokuchi, Ishikawa, 923-1292, Japan.

masaki-n@jaist.ac.jp

3Research Institute of Electrical Communication, Tohoku University,
Katahira, Aoba-ku, Sendai, 980-8577, Japan.

toyama@nue.riec.tohoku.ac.jp

Abstract. To simplify the task of proving termination and AC-termination of term rewriting
systems, elimination transformations have been vigorously studied since the 1990’s. Dummy
elimination, distribution elimination, general dummy elimination and improved general dummy
elimination are examples of elimination transformations. In this paper we clarify the essence
of elimination transformations based on the notion of dependency pairs. We first present a
theorem that gives a general and essential property for elimination transformations, making
them sound with AC-termination. Based on the theorem, we design an elimination trans-
formation called the argument filtering transformation. Next, we clarify the relation among
various elimination transformations by comparing them with a corresponding restricted ar-
gument filtering transformation. Finally, we compare the AC-dependency pair method with
the argument filtering transformation.

Keyword. (AC-)termination, (AC-)dependency pair, argument filtering, elimination trans-
formation

1 Introduction

Term Rewriting Systems (TRSs) are models for computation in which terms are reduced by using a
set of directed equations [4, 19, 28, 30]. They are used to represent abstract interpreters of functional
programming languages and to model formal manipulation systems used in such applications as program
optimization, program verification, and automatic theorem proving. Termination and AC-termination
(i.e. the termination of TRSs with associative and commutative equations) are two of the most fundamen-
tal properties of TRSs. Even though termination and AC-termination are undecidable properties, several
methods for proving termination and AC-termination have been developed [28, 30]. Several transforma-
tion methods have also been proposed to simplify the task of proving termination and AC-termination
to which these methods cannot be directly applied.

Elimination transformations, which have been actively studied since the 1990’s, try to transform a
given TRS into a TRS whose termination and AC-termination are easier to prove than the original one.
Dummy elimination [8], distribution elimination [25, 35], general dummy elimination [9], and improved
general dummy elimination [27] are examples of elimination transformations. In particular, dummy
elimination [10] and distribution elimination [29] are still sound for AC-termination, if the TRS to be
transformed has only one AC-function symbol to be eliminated.

On the other hand, Arts and Giesl proposed the notion of dependency pairs [2, 3]. Two extensions
of dependency pairs to TRSs with AC-function symbols, called the AC-dependency pair, were indepen-
dently developed by Kusakari and Toyama [22] and by Marché and Urbain [23]. Giesl and Kapur also

Parts of this work were done while K. Kusakari was completing his PhD thesis: “Termination, AC-Termination and
Dependence Pairs of Term Rewriting Systems”, at Japan Advanced Institute of Science and Technology, School of Infor-
mation Science (March, 2000). A preliminary version of parts of this article appeared in K. Kusakari, M. Nakamura, Y.
Toyama, Argument filtering transformation, Proc. of Int. Conf. on Principle and Practice of Declarative Programming,
LNCS 1702 (Springer-Verlag, 1999) pp.47–61.

1

extended the notion to TRSs with equations, which include AC-equations [13]. Using the notion of
AC-dependency pairs, we can easily show the AC-termination property of TRSs to which traditional
techniques cannot be applied. To show the (AC-)termination by the (AC-)dependency pair method, the
notion of (AC-)reduction pair plays an essential role. The argument filtering method, which helps us lo-
cate an appropriate reduction pair, was proposed by Arts and Giesl [2, 3]; this method was also extended
to TRSs with AC-function symbols [21, 23].

In this paper we investigate the relationship between the dependency pair method and elimination
transformations. Our key observation is that the essence of elimination transformations can be explained
by the notion of dependency pairs. We first show a theorem that presents a general and essential property
for elimination transformations, making them sound with AC-termination. Indeed, we present remarkably
simple proofs for the soundness of these elimination transformations based on this observation, although
the original proofs presented in [8, 9, 10, 25, 27, 29, 35] are treated as different methods. This observation
also leads to an elimination transformation called the argument filtering transformation, which is not only
more powerful than all the other elimination transformations but also is especially useful to clarify the
essential relationship hidden behind these transformations. The main contributions of this paper are:

(1) We show that dependency pairs with the argument filtering method in a uniform framework can
clearly explain why various elimination transformations work well. Although this result gives a
property of AC-termination, we can use dependency pairs instead of AC-dependency pairs. This
approach helps in analyzing effectively all the elimination transformations.

(2) An elimination transformation called the argument filtering transformation is proposed. Unlike other
elimination transformations, it has been carefully designed to remove all unnecessary rewrite rules,
so it is the most powerful elimination transformation.

(3) We clarify the relationship among various elimination transformations by comparing them with a
corresponding restricted argument filtering transformation. For example, dummy elimination can
be seen as a restricted argument filtering transformation in which argument filtering always removes
all arguments, and distribution elimination restricts argument filtering by collapsing into one.

(4) We show that all elimination transformations soundly prove not only termination but also AC-
termination. Although the existing results for the soundness of AC-termination of dummy elim-
ination [10] and distribution elimination [29] can be applied only to TRSs that have exactly one
AC-function symbol to be eliminated, our method has no such restriction.

(5) We show that the argument filtering transformation and AC-dependency pair method cannot be
compared. There exists a TRS such that it is difficult for the AC-dependency pair method to
prove the AC-termination, but an argument filtering transformation can transform it into a simple
terminating TRS, and vice versa.

The remainder of this paper is organized as follows. The next section provides the preliminaries
needed below, and in Section 3, we review the AC-dependency pair method [21, 22]. In Section 4, we use
these results to show a general and essential property for elimination transformations that are sound for
AC-termination. In Section 5, we propose the argument filtering transformation and show its soundness
for AC-termination. In Section 6, we compare various elimination transformations with the argument
filtering transformation and give simple proofs of their soundness for AC-termination. Section 7 contains
a comparison of the argument filtering transformation with the AC-dependency pair method. Finally, we
summarize our results and outline future works in Section 8.

2 Preliminaries

We assume that the reader is familiar with notions of term rewriting systems [4].
A signature Σ is a finite set of function symbols, where each f ∈ Σ is associated with a non-negative

integer n, written as arity(f). A set V is an enumerable set of variables with Σ ∩ V = ∅. The set of
terms constructed from Σ and V is written as T (Σ, V). Identity of terms is denoted by ≡. The set of
variables occurring in a term t is denoted by V ar(t). A term t is linear if every variable in t occurs only
once. The set ΣAC of associative-commutative function symbols, which have fixed arity 2, is a subset
of Σ. The binary relation ∼

AC
is the congruence relation generated by f(f(x, y), z) =A f(x, f(y, z)) and

2

f(x, y) =C f(y, x) for all f ∈ ΣAC . A position of a term is a sequence of positive integers. The root
position is denoted by the empty sequence ε. The prefix order ≺ on term positions is defined by p ≺ q iff
pw = q for some w (6= ε).

A substitution θ : V → T (Σ, V) is a mapping. A substitution over terms is defined as a homomorphic
extension. We write tθ instead of θ(t). A context C[]p is a term with the occurrence of a special constant
�, called a hole, at position p. C[t]p denotes the result of replacing the hole with t, and we sometimes
omit p as C[t] if no confusion arises. A term s is called a subterm of t if t ≡ C[s] for some context C[]; s

is a proper subterm if s 6≡ t. (t)p denotes the symbol at position p in t, and t|p denotes the subterm of t

at position p.
A rewrite rule is a pair of terms, written as l → r, with l 6∈ V and V ar(l) ⊇ V ar(r). A term rewriting

system (TRS) is a finite set of rules. A TRS R is said to be right-linear if r is linear for each l → r ∈ R.
The set of defined symbols in R is DF (R) = {(l)ε | l → r ∈ R}. The reduction relation →

R

p and the

AC-reduction relation →
R/AC

p are defined as follows:

s→
R

p t
def
⇐⇒ s ≡ C[lθ]p ∧ t ≡ C[rθ]p

for some l → r ∈ R, θ and C[]p

s →
R/AC

p t
def
⇐⇒ s ∼

AC
C[lθ]p ∧ t ≡ C[rθ]p

for some l → r ∈ R, θ and C[]p

Note that →
R/AC

= ∼
AC

·→
R

. We often omit the subscripts p, R and R/AC whenever no confusion arises. The

transitive-reflexive closure of a binary relation → is denoted by
∗
→. The transitive closure of a binary

relation → is denoted by
+
→. A TRS R is terminating if there exists no infinite reduction sequence such

that t0 →
R

t1 →
R

t2 →
R
· · ·, and AC-terminating if there exists no infinite AC-reduction sequence such that

t0 →
R/AC

t1 →
R/AC

t2 →
R/AC

· · ·.

A binary relation > is a strict order if > is transitive and irreflexive. A binary relation ≥ is a partial

order if ≥ is reflexive, transitive and antisymmetric. A binary relation & is a quasi-order if & is transitive
and reflexive. The strict part of a quasi-order & is defined as & \ .. The equivalence part of a quasi-order
& is defined as & ∩ .. A reduction order > is a well-founded strict order on terms that is monotonic
and stable. Here > is monotonic iff s > t ⇒ C[s] > C[t], and stable iff s > t ⇒ sθ > tθ. An AC-reduction

order > is a reduction order that is AC-compatible, i.e., s ∼
AC

s′ > t ⇒ s > t.

Proposition 2.1 A TRS R is terminating iff there exists a reduction order > that satisfies l > r for all
l → r ∈ R. A TRS R is AC-terminating iff there exists an AC-reduction order > that satisfies l > r for
all l → r ∈ R.

A simplification order > is a reduction order with the subterm property, i.e., C[t] > t for all t and
non-empty context C[]. A TRS R is said to be simply terminating if there exists a simplification order >

such that l > r for all l → r ∈ R, and said to be simply AC-terminating if there exists a AC-compatible
simplification order > such that l > r for all l → r ∈ R. We define the embedding TRS Emb as follows:

Emb = {f(x1, . . . , xn) → xi | f ∈ Σ, 1 ≤ i ≤ n = arity(f)}

Proposition 2.2 [20] A TRS R is simply (AC-)terminating iff R ∪ Emb is (AC-)terminating.

Although the proof in the literature [20] does not consider AC-symbols, it also works for AC-
termination.

3 AC-Dependency Pairs and Argument Filtering Method

In this section, we review notions and results for unmarked and marked AC-dependency pairs in [22]
and the argument filtering method in [21], needed later on. We will use the notion of unmarked AC-
dependency pairs for analysis of transformation techniques in the next section. The notion of marked
AC-dependency pairs will be only applied in the comparison between transformation techniques and the
AC-dependency pair method in Section 7.

3

3.1 Unmarked AC-Dependency Pairs

Definition 3.1 A position p in a term t is said to be a head position if p = ε or (t)q = (t)p ∈ ΣAC for
all q ≺ p. We denote by Ohd(t) the set of all head positions in a term t. A term t is said to be a head

subterm of a term s, denoted by s Dhd t, if s ∼
AC

C[t]p and p ∈ Ohd(C[t]p) for some context C[]. A body

reduction s→
bd

t is defined by s →
R/AC

pt and p 6∈ Ohd(s).

Definition 3.2 Let R be a TRS. We define the set of unmarked dependency pairs DP (R) and the set of
AC-extended unmarked dependency pairs DPex(R) as follows:

DP (R) = {〈u, v〉 | u → C[v] ∈ R, (v)ε ∈ DF (R)},
DPex(R) = {〈f(l, z), f(r, z)〉 | l → r ∈ R, (l)ε = f ∈ ΣAC},

where z is a fresh variable. The unmarked AC-dependency pairs DPAC(R) is defined by the union of the
unmarked dependency pairs and the AC-extended ones, i.e.,

DPAC(R) = DP (R) ∪ DPex(R).

Example 3.3 Let R1 = {add(x, 0) → x, add(x, s(y)) → s(add(x, y))} and ΣAC = {add}. Then we
obtain DP (R1), DPex(R1) and DPAC(R1) as follows:

DP (R1) =
{

〈add(x, s(y)), add(x, y)〉

DPex(R1) =

{

〈add(add(x, 0), z), add(x, z)〉
〈add(add(x, s(y)), z), add(s(add(x, y)), z)〉

DPAC(R1) = DP (R1) ∪ DPex(R1)

Definition 3.4 A sequence 〈u0, v0〉〈u1, v1〉〈u2, v2〉 · · · of unmarked AC-dependency pairs is an unmarked

AC-dependency chain of R if there exist AC-terminating substitutions1 θi (i = 0, 1, 2, . . .) such that

viθi
∗
→
bd

Dhd ui+1θi+1 for all i.

Proposition 3.5 [22] The following properties are equivalent2.

• A TRS R is AC-terminating.

• There exists no infinite unmarked AC-dependency chain of R.

Next we give the notion of an AC-reduction pair, which is a pair of binary relations for rewrite rules
and AC-dependency pairs. As an AC-reduction order guarantees the absence of infinite rewrite sequences,
an AC-reduction pair guarantees the absence of infinite AC-dependency chains.

Definition 3.6 A pair (&, >′) of binary relations on terms is said to be an AC-reduction pair if

• & is AC-compatible, i.e., s ∼
AC

t ⇒ s & t,

• & is monotonic and stable,

• >′ is stable and well-founded, and

• & · >′ ⊆>′ or >′ · &⊆>′.

An AC-reduction pair (&, >′) has the AC-deletion property if

• f(f(x, y), z) & f(x, y) or f(f(x, y), z) >′ f(x, y)
for all f ∈ ΣAC .

Proposition 3.7 [21] The following properties are equivalent.

• A TRS R is AC-terminating.

• There exists an AC-reduction pair (&, >) with the AC-deletion property such that &⊇ R and
>⊇ DPAC(R).

1A substitution θ is AC-terminating if xθ is AC-terminating for all x ∈ V .
2Although the AC-dependency chain in [22] is defined by substitutions θi without the AC-terminating restriction, the

proof used AC-terminating substitutions.

4

3.2 Marked AC-Dependency Pairs

In the dependency pair method, the marking technique works effectively for proving (AC-)termination.
Proposition 3.7 holds even if the head function symbols of dependency pairs are marked. Marked de-
pendency pairs are more powerful for proving (AC-)termination than unmarked ones since we can use
marked function symbols and unmarked ones separately.

Definition 3.8 The marked symbol of a symbol f is denoted by f#. The marked term of a term t,
denoted by t#, is the result of replacing each symbol f at head positions with the marked symbol f#.
We regard f# as an AC-symbol for any f ∈ ΣAC , i.e., ΣAC := ΣAC ∪ {f# | f ∈ ΣAC}.

The dependency pairs DP #(R), the AC-extended dependency pairs DP #
ex(R) and the AC-dependency

pairs DP #
AC(R) are obtained by marking all head positions in DP (R), DPex(R) and DPAC(R), respec-

tively.

Example 3.9 We consider the TRS R1 in Example 3.3. Then we obtain DP #
AC

(R1) as follows:

DP #
AC

(R1) =







〈add#(x, s(y)), add#(x, y)〉
〈add#(add#(x, 0), z), add#(x, z)〉
〈add#(add#(x, s(y)), z), add#(s(add(x, y)), z)〉

Definition 3.10 An AC-reduction pair (&, >′) satisfies the AC-marked condition if

• f#(f(x, y), z) ∼ f#(f#(x, y), z) for all f ∈ ΣAC ,

where ∼ is the equivalence part of &.

Proposition 3.11 [21] The following properties are equivalent.

• A TRS R is AC-terminating.

• There exists an AC-reduction pair (&, >) with the AC-deletion property and the AC-marked con-
dition such that &⊇ R and >⊇ DP #

AC
(R).

3.3 Argument Filtering Method

The argument filtering method allows us to make an AC-reduction pair from an arbitrary AC-reduction
order. In this subsection, we introduce the argument filtering method.

Definition 3.12 An argument filtering function π is a function such that π(f) is either a positive integer
i or a list of positive integers [i1, . . . , im] where those integers i, i1, . . . , im are not more than arity(f)
(possibly duplications). We can naturally extend π : T (Σ, V) → T (Σπ, V) over terms as follows:

π(x) = x if x ∈ V

π(f(t1, . . . , tn)) = π(ti) if π(f) = i

π(f(t1, . . . , tn)) = f(π(ti1), . . . , π(tim)) if π(f) = [i1, . . . , im]

where Σπ has all function symbols of Σ but the arity of each function symbol is changed into m if
π(f) = [i1, . . . , im]. An argument filtering function π satisfies the AC-condition if π(f) is either [] or [1, 2]
for any AC-symbol f . We define AC-function symbols after argument filtering by Σπ

AC
= {f ∈ ΣAC |

π(f) = [1, 2]}.

We hereafter assume that if π(f) is not defined explicitly then it is intended to be [1, . . . , arity(f)].

Definition 3.13 Let > be a strict order. We define the AC-extension &AC by &AC= (> ∪ ∼
AC

)∗, s &sub
AC

t

by s &AC C[t] for some C[], and �sub
AC by the strict part of &sub

AC .

Definition 3.14 Let > be a strict order and π an argument filtering function. We define s &π t by
π(s) &AC π(t), and s >π t by π(s) �sub

AC
π(t).

Proposition 3.15 [21, 23]3 If > is an AC-reduction order and π is an argument filtering function with
the AC-condition then (&π, >π) is an AC-reduction pair with the AC-deletion property.

3In [23], Marché and Urbain discussed the framework of recursive program schemes which includes the argument filtering
method. We slightly improved it by the notion of AC-reduction pairs [21].

5

4 Soundness Condition for the Elimination Transformations

In this section, using dependency pairs and the argument filtering method, we clarify a general and
essential property for elimination transformations to be sound with respect to AC-termination. Here the
soundness of a transformation means that the AC-termination of a transformed TRS guarantees that of
a given original TRS.

Definition 4.1 We define the including relation v as follows:

R v R′ def
⇐⇒ ∀l → r ∈ R.∃C[]. l → C[r] ∈ R′

We notice that if there exists a simply (AC-)terminating TRS R′ and R v R′ then the TRS R is
simply (AC-)terminating.

Theorem 4.2 Let R be a TRS, R′ an AC-terminating TRS and π an argument filtering function with
the AC-condition. If π(R) ⊆ R′ and π(DP (R)) v R′ then R is AC-terminating.

Taking R as a given TRS and R′ as a transformed TRS in an elimination transformation, this
simple theorem can uniformly explain why elimination transformations work well with respect to AC-
termination. This fact is very interesting because in the original literature the soundness of these elimi-
nation transformations was proved by different methods.

Note that the above theorem can be proved straightforwardly if R′ includes AC-dependency pairs,
i.e. π(DPAC(R)) v R′; however, we do not use AC-dependency pairs even though they are a property
of AC-termination. This theorem insists that only ordinary dependency pairs, which do not include AC-
extended dependency pairs, are sufficient to show the AC-termination of a given TRS. We will prove it by
showing that no infinite chain consisting of AC-extended dependency pairs exists under the assumption
of π(R) ⊆ R′, π(DP (R)) v R′ and AC-terminating R′. The use of DP (R) helps in effectively analyzing
all the elimination transformations. In Sections 5 and 6, we will explain how this theorem simplifies the
requirements in elimination transformations through the argument filtering transformation.

Proof. We assume that R is not AC-terminating. From Proposition 3.5, there exists an infinite un-
marked AC-dependency chain

〈u0, v0〉〈u1, v1〉〈u2, v2〉 · · ·

and AC-terminating substitutions θ′i (i = 0, 1, 2, . . .) such that

viθ
′
i

∗
→
bd

Dhd ui+1θ
′
i+1

for all i.
We define > as

+
→

R′/AC

. The AC-termination of R′ ensures that > is an AC-reduction order. From

π(R) ⊆ R′, it follows that R ⊆&π, hence
∗
→
bd

⊆&π. The inclusion DP (R) ⊆>π follows from π(DP (R)) v

R′. From π(R) ⊆ R′ and the AC-condition of π, for any 〈f(l, z), f(r, z)〉 ∈ DPex(R), we have f(l, z) &π

f(r, z) and either π(f) = [] or π(f) = [1, 2].
From the well-foundedness of >π, there exist a number k, an AC-symbol f and li → ri ∈ R (i =

k, k + 1, . . .) such that π(f) = [] and 〈ui, vi〉 = 〈f(li, zi), f(ri, zi)〉 for all i ≥ k. Hence, letting θi = θ′k+i,
we obtain the following infinite decreasing sequence:

f(l0, z0)θ0 →
R/AC

f(r0, z0)θ0
∗
→
bd

Dhdf(l1, z1)θ1 →
R/AC

f(r1, z1)θ1
∗
→
bd

Dhd · · ·

where π(f) = [], li → ri ∈ R, zi 6∈ V ar(li), and each θi is an AC-terminating substitution. Without loss
of generality, for each i we suppose that

f(ri, zi)θi
∗
→
bd

f(ti, t
′
i) Dhd f(li+1, zi+1)θi+1 → f(ri+1, zi+1)θi+1

such that riθi
∗
→ ti and ziθi

∗
→ t′i.

For any t, we define the multiset B′
f (t) as follows:

B′
f (t) =

{

{t} if (t)ε 6= f

{t|p | p 6∈ Ohd(t), ∀q ≺ p. q ∈ Ohd(t)} if (t)ε = f

6

We also define Bf (t) by |B′
f (t)|.

Here, if riθi
∗
→

R/AC
t with (t)ε = f , then it is a contradiction with f ≡ π(liθi) →

R′/AC

π(riθi)
∗
→

R′/AC

π(t) ≡ f

and the AC-termination of R′. Thus each riθi cannot be reduced to any term with the root symbol f .
Hence we obtain the following equality:

Bf (riθi) = Bf (ti) = 1 · · · (i)

From the definition of B′
f and Dhd, B′

f (f(ti, t
′
i)) ⊇ B′

f (f(li+1, zi+1)θi+1). Hence we obtain the following
inequality:

Bf (f(ti, t
′
i)) ≥ Bf (f(li+1, zi+1)θi+1) · · · (ii)

Since f is an AC-symbol, arity(f) = 2. Hence Bf (li+1θi+1) ≥ 2. From Bf (ri+1θi+1) = 1, it follows that

Bf (f(li+1, zi+1)θi+1) > Bf (f(ri+1, zi+1)θi+1) · · · (iii)

Let ni = Bf (t′i) − Bf (ziθi). From ziθi
∗
→ t′i and f(ri, ziθi)

∗
→
bd

f(ti, t
′
i), it follows that

Σ{Bf (t) | ziθi
∗
→ t} ≥ Bf (t′i) > ni ≥ 0

Here, we combine facts (i), (ii) and (iii):

Bf (f(ri, zi)θi) + ni = (1 + Bf (ziθi)) + (Bf (t′i) − Bf (ziθi))

= 1 + Bf (t′i)

= Bf (f(ti, t
′
i))

≥ Bf (f(li+1, zi+1)θi+1)

> Bf (f(ri+1, zi+1)θi+1)

Since each ti cannot be reduced to any term with the root symbol f , either ti ∼
AC

zi+1θi+1 or t′iDhdzi+1θi+1.

If ti ∼
AC

zi+1θi+1 for some i, then Bf (t) = 2 for all t such that f(ri+1, zi+1)θi+1
∗
→ t. It is a contradiction

with f(ri+1, zi+1)θi+1
∗
→Dhdf(li+2, zi+2)θi+2 and f(li+2, zi+2)θi+2 ≥ 3. Suppose that t′i Dhd zi+1θi+1 for

each i. Then ziθi
∗
→Dhdzi+1θi+1.

Since z0θ0 is AC-terminating, Σ{Bf (t) | z0θ0
∗
→C[t]} is finite. Hence Σ∞

i=0ni is also finite, because of

Σ{Bf (t) | z0θ0
∗
→C[t]} ≥ Σ∞

i=0Σ{Bf (t) | ziθi
∗
→ t} > Σ∞

i=0ni.

Thus, there exists a natural number k such that ni = 0 for all i ≥ k. Therefore it is a contradiction with

Bf (f(rk , zk)θk) > Bf (f(rk+1, zk+1)θk+1) > Bf (f(rk+2, zk+2)θk+2) > · · ·

�

5 Argument Filtering Transformation

In this section, we propose an elimination transformation called the argument filtering transformation
(AFT). Although the AFT can be regarded as a new method to prove the AC-termination, the main
purpose is to demonstrate that the existing elimination transformations can be explained by the notion
of argument filtering. Two kinds of AFT are shown. The former is denoted by AFTπ, where parameter π

is an argument filtering function, and the latter is denoted by AFT
~Ci

π , where parameter ~Ci is a sequence
of contexts. The AFT is directly designed based on Theorem 4.2, which is the essence of elimination
transformations.

For an argument filtering function π, the argument filtering function π is defined as follows: π(f) = [i]
if π(f) is an integer i, and π(f) = π(f) if π(f) is a list.

Definition 5.1 (Argument Filtering Transformation)
Let π be an argument filtering function. The argument filtering transformation (AFTπ) is defined as
follows:

7

decπ(t) =

{

∅ if t ∈ V
⋃

i6∈π(f){ti} ∪
⋃n

i=1 decπ(ti) if t ≡ f(t1, . . . , tn)

pickπ(T) = {t ∈ T | π(t) includes some defined symbols of R}

AFTπ(R) = π(R) ∪ {π(l) → π(r′) | l → r ∈ R, r′ ∈ pickπ(decπ(r))}

The main part π(R) of a transformed TRS AFTπ(R) guarantees that the first condition π(R) ⊆ AFTπ(R)
of Theorem 4.2 is satisfied. Functions decπ and pickπ are designed for satisfying the second condition
π(DP (R)) v AFTπ(R) of Theorem 4.2. The function decπ collects the subterms deleted by π. Since
only terms having defined symbols are needed for the inclusion π(DP (R)) v AFTπ(R), only such terms
are picked up by pickπ. We provide an example of the AFT .

Example 5.2 Let R2 be a TRS, ΣAC = {h} and π an argument filtering function such that

R2 =







f(x, f(x, x)) → f(h(g(0, 1, 2), 3), g′(f(4, 5), 6))
4 → 1
5 → 1

and π(h) = [], π(g) = [1, 3], and π(g′) = 2. Note that DF (R2) = {f, 4, 5}. We denote r instead of
f(h(g(0, 1, 2), 3), g′(f(4, 5), 6)). Then,

π(r) = f(h, 6)

decπ(r) = {g(0, 1, 2), 1, 3, f(4, 5)}

pickπ(decπ(r)) = {f(4, 5)}

π(R2) = {f(x, f(x, x)) → f(h, 6), 4 → 1, 5 → 1}

AFTπ(R2) = π(R2) ∪ {f(x, f(x, x)) → f(4, 5)}

The termination of AFTπ(R2) is easily proved by the recursive path order [7]. Since Σπ
AC = ∅, AFTπ(R2)

is trivially AC-terminating. Thus, R2 is terminating and AC-terminating, if the argument filtering
transformation is sound.

To show the soundness of AFTπ, we first show that decπ takes all deleted subterms that are needed
for the inclusion π(DP (R)) v AFTπ(R); that is, for a term s and its subterm t, if π(t) is not a subterm
of π(s) then a term having π(t) as a subterm is in π(decπ(t)).

Lemma 5.3 Let C[] be a context and t a term. Then, there exists a context D[] such that D[π(t)] ∈
π(decπ(C[t])) or D[π(t)] ≡ π(C[t]).

Proof. We prove the claim by induction on the structure of C[]. In the case C[] ≡ �, it is trivial.
Suppose that C[] ≡ f(. . . , ti−1, C

′[], ti+1, . . .). From the induction hypothesis, there exists a context D′[]
such that D′[π(t)] ∈ π(decπ(C ′[t])) or D′[π(t)] ≡ π(C ′[t]). In the former case, it follows that D′[π(t)]
∈ π(decπ(C ′[t])) ⊆ π(decπ(C[t])). In the latter case, if i = π(f) or i ∈ π(f) then trivial. Otherwise,
D′[π(t)] ≡ π(C ′[t]) ∈ π(decπ(C[t])) from the definition of decπ. �

Theorem 5.4 If AFTπ(R) is AC-terminating and π satisfies the AC-condition then R is AC-terminating.

Proof. From the definition, π(R) ⊆ AFTπ(R). Let 〈u, v〉 ∈ DP (R). From the definition of DP , there
exists a rule u → C[v] ∈ R. From Lemma 5.3, there exists a context D[] such that D[π(v)] ∈ π(decπ(C[v]))
or D[π(v)] ≡ π(C[v]). In the former case, from the definition of DP and π, (π(v))ε is a defined symbol.
Thus, D[π(v)] ∈ π(pickπ(decπ(C[v]))). Therefore, it follows that π(u) → D[π(v)] ∈ AFTπ(R). In the
latter case, it follows that π(u) → D[π(v)] ∈ π(R) ⊆ AFTπ(R). From Theorem 4.2, R is AC-terminating.

�

The following two corollaries are obtained as special cases of this theorem, i.e., Σπ
AC

= ∅ and ΣAC = ∅,
respectively.

8

Corollary 5.5 If AFTπ(R) is terminating and π(f) = [] for each AC-symbol f then R is AC-terminating.

Corollary 5.6 If AFTπ(R) is terminating then R is terminating.

From the proof of Theorem 5.4, we can see that the second argument {π(l) → π(r′) | l → r ∈
R, r′ ∈ pickπ(decπ(r))} of the definition of the argument filtering transformation AFTπ is used only
to keep information of dependency pairs. Thus, introducing redundancy context does not destroy the
soundness of the argument filtering transformation. Therefore, we can define another argument filtering

transformation AFT
~Ci

π (R) as

AFT
~Ci

π (R) = {l1 → C1[r1], . . . , ln → Cn[rn]}

where AFTπ(R) = {l1 → r1, . . . , ln → rn} and ~Ci denotes the list of contexts C1[], C2[], . . . , Cn[]. The
following theorem about simple termination trivially holds:

Theorem 5.7 If AFT
~Ci

π (R) is simply (AC-)terminating, AFTπ(R) is simply (AC-)terminating.

We also obtain the following corollary from Theorem 5.4 and Corollaries 5.5 and 5.6:

Corollary 5.8

1. If AFT
~Ci

π (R) is AC-terminating and π satisfies the AC-condition then R is AC-terminating.

2. If AFT
~Ci

π (R) is terminating and π(f) = [] for any AC-symbols f then R is AC-terminating.

3. If AFT
~Ci

π (R) is terminating then R is terminating.

Efficient choice of π aside, AFTπ may be used for automated termination proofs since the number of π

to be considered for the set of function symbols of an input TRS is finite. While the number of argument
filterings is finite, it is exponential. Hence, to automate the argument filtering transformation one needs
a method to efficiently search for a suitable argument filtering. For the dependency pair approach, such
methods were developed in [16, 18]. We feel that these methods can also work well for the argument

filtering transformation, but the same cannot be said for AFT
~Ci

π because there are infinitely many ~Ci.

We introduced AFT
~Ci

π for comparison with some existing elimination transformations. Although we can

provide a way to choose a suitable ~Ci for each elimination transformation, it is not important for the
comparison. Since one of the simplest ways to compare termination of two TRSs is to show an inclusion
relation of them, such as R1 ⊆ R2, we want to point out that for each existing elimination transformation
E, our AFTπ(R) is a subset of E(R) for some π. Unfortunately there exists E such that AFTπ(R) is
not included in E(R) for any π because of redundancy contexts of E(R). For the extending argument

filtering transformation AFT
~Ci

π , we can say that AFT
~Ci

π (R) ⊆ E(R) for some π and ~Ci. This is the

only reason we introduced AFT
~Ci

π . If E(R) is simply terminating, so is AFTπ(R) from Theorem 5.7

whenever AFT
~Ci

π (R) ⊆ E(R). Since the elimination transformations have been designed to transform
non-simply terminating TRSs into simply terminating TRSs, it can be said that AFTπ is a more powerful

transformation method than E if AFT
~Ci

π ⊆ E(R).

6 Elimination Transformations

Elimination transformations were actively studied in the 1990’s [8, 9, 10, 25, 27, 29, 35]. In this sec-
tion, we present remarkable simple proofs for the soundness of existing elimination transformations: the
dummy elimination [8, 10], the distribution elimination [25], the general dummy elimination [9], and
the improved general dummy elimination [27]. For each elimination transformation, we introduce its
definition and properties about soundness and show that it is an instance of the argument filtering trans-
formation. Furthermore, we demonstrate that not only the argument filtering transformation includes
all the elimination transformations but also that there exists a non-simply terminating TRS that no
elimination transformation can simplify but the argument filtering transformation can transform into a
simply terminating TRS.

9

6.1 Dummy Elimination

The dummy elimination, introduced by Ferreira and Zantema in [8], is the simplest elimination trans-
formation. Moreover, Ferreira showed that the dummy elimination is also sound with respect to AC-
termination if only one AC-function symbol is eliminated [10]. In this subsection, we explain that the
argument filtering transformation is a proper extension of the dummy elimination, and that the dummy
elimination is also sound with respect to AC-termination for an arbitrary number of AC-function symbols.

Definition 6.1 [8](Dummy Elimination) Let e be a function symbol, called an eliminated symbol. The
dummy elimination (DEe) is defined as follows:







cape(x) = x

cape(e(t1, . . . , tn)) = �
cape(f(t1, . . . , tn)) = f(cape(t1), . . . , cape(tn)) if f 6= e







dece(x) = ∅
dece(e(t1, . . . , tn)) =

⋃n
i=1({cape(ti)} ∪ dece(ti))

dece(f(t1, . . . , tn)) =
⋃n

i=1 dece(ti) if f 6= e

DEe(R) = {cape(l) → r′ | l → r ∈ R, r′ ∈ {cape(r)} ∪ dece(r)}

Example 6.2 Let t ≡ f(e(0, g(1, e(2, 3))), 4). Then, cape(t) = f(�, 4) and dece(t) = {0, 2, 3, g(1, �)}.

We introduce known results related with the dummy elimination for termination [8] and AC-termination
[10].

Proposition 6.3

(a) [8] If DEe(R) is terminating then R is terminating.

(b) [10] If DEe(R) is terminating and e is only AC-function symbol then R is AC-terminating.

In the following, we show that the dummy elimination can be expressed by the argument filtering
transformation with π(e) = []. In the case of π(e) = [], it is noticed that all terms e(. . .) with the root
symbol e are transformed into a constant e by π, i.e. π(e(. . .)) ≡ e. We suppose that the constant �
occurring in DEe(R) is identified with the constant e in AFTπ(R) without loss of generality.

Lemma 6.4 For π(e) = [], AFTπ(R) ⊆ DEe(R).

Proof. Let π(e) = []. Trivially π = cape and π(pickπ(decπ(t))) ⊆ π(decπ(t)). We firstly prove
π(decπ(t)) = dece(t) by induction on t. The case t ∈ V is trivial. Suppose that t ≡ f(t1, . . . , tn).
In the case f 6= e,

π(decπ(f(t1, . . . , tn))) =
⋃n

i=1 π(decπ(ti))
=

⋃n
i=1 dece(ti)

= dece(f(t1, . . . , tn))

In the case f = e,
π(decπ(e(t1, . . . , tn))) =

⋃n
i=1({π(ti)} ∪ π(decπ(ti)))

=
⋃n

i=1({cape(ti)} ∪ dece(ti))
= dece(e(t1, . . . , tn)).

Next we assume l → r ∈ AFTπ(R) is an arbitrary rule in AFTπ(R). From the definition of AFTπ,
there exists l′ → r′ ∈ R such that l ≡ π(l′) and r ∈ π(pickπ(decπ(r′))). From the definition of DEe,
there exists cape(l

′) → r′′ ∈ DEe(R) for each r′′ ∈ {cape(r
′)} ∪ dece(r

′). Since π(t) ≡ cape(t) and
π(pickπ(decπ(t))) ⊆ dece(t) for each t, the rule l → r also exists in DEe(R). �

Theorem 6.5 Let π(e) = []. If DEe(R) is AC-terminating or simply AC-terminating then so is
AFTπ(R), respectively.

Proof. From Lemma 6.4. �

10

This theorem means that the argument filtering transformation is a proper extension of the dummy
elimination. Hence we obtain the following corollary from Theorems 5.4 and 6.5.

Corollary 6.6 If DEe(R) is AC-terminating then R is AC-terminating.

We notice that known results (a) and (b) in Proposition 6.3 are special cases ΣAC = ∅ and ΣAC = {e}
of Corollary 6.6, respectively.

6.2 Distribution Elimination

The distribution elimination, introduced by Zantema in [35], is an exceptional elimination transformation:
it is not sound with respect to termination and AC-termination in general. The distribution elimination
requires the right-linearity of transformed TRS. After then, Ohsaki, Middeldorp, and Giesl showed that
the distribution elimination is also sound with respect to AC-termination if the eliminated symbol is
only one AC-function symbol [29]. On the other hand, Middeldorp, Ohsaki, and Zantema gave another
restriction without right-linearity to ensure the soundness of termination [25].

Definition 6.7 [35](Distribution Elimination) Let e be an eliminated symbol with arity(e) > 0. A rule
l → r is said to be a distribution rule for e if l ≡ C[e(x1, . . . , xn)] and r ≡ e(C[x1], . . . , C[xn]) for some
pairwise different variables x1, . . . , xn and some non-empty context C[] in which e does not occur. The
distribution elimination (DISe) is defined as follows:

Ee(t) =















{t} if t ∈ V
⋃n

i=1 Ee(ti) if t ≡ e(t1, . . . , tn)
{f(s1, . . . , sn) | si ∈ Ee(ti)} if t ≡ f(t1, . . . , tn)

with f 6= e

DISe(R) =

{l → r′ | l → r ∈ R is not a distribution rule for e, r′ ∈ Ee(r)}

Example 6.8 Let t ≡ f(e(0, g(1, e(2, 3))), 4).
Then, Ee(t) = {f(0, 4), f(g(1, 2), 4), f(g(1, 3), 4)}.

We introduce known results related to the distribution elimination for termination [35] and AC-
termination [29] with the restriction of right-linearity, and termination without right-linearity [25].

Proposition 6.9

• Suppose that each rule l → r ∈ R is a distribution rule or a rule in which the eliminated symbol e

does not occur in l.

(a) [35] If DISe(R) is terminating and right-linear then R is terminating.

(b) [29] If DISe(R) is terminating, right-linear and e is only AC-symbol (i.e. ΣAC = {e}) then R

is AC-terminating.

• Suppose that the eliminated symbol e does not occur in l for each rule l → r ∈ R.

(c) [25] If DISe(R) is terminating then R is terminating.

In the following, we explain how the distribution elimination is expressed as a restricted argument
filtering transformation, and generalize the known result (c) in this proposition to handle AC-function
symbols. The corresponding argument filtering is π(e) = i for some i = 1, . . . , arity(e).

Lemma 6.10 Suppose that the eliminated symbol e does not occur in l for all l → r ∈ R. For any

i ∈ {1, . . . , arity(e)}, if π(e) = i, then AFT
~Ci

π (R) ⊆ DISe(R) for some ~Ci.

Proof. From the definition of AFTπ, for any li → ri ∈ AFTπ(R) there exists a rule li → C ′[r′] ∈ R

such that r ≡ π(r′). It is easily proved by induction on C ′[] that for any r′ and C ′[], there exists a
context C[] such that C[π(r′)] ∈ Ee(C

′[r′]). Hence there exists li → Ci[ri] ∈ DISe(R). For these Ci we

get AFT
~Ci

π (R) ⊆ DISe(R). �

11

Theorem 6.11 Suppose that the eliminated symbol e does not occur in l for all l → r ∈ R. We
choose π(e) = i for some i = 1, . . . , arity(e). If DISe(R) is AC-terminating or terminating then so is

AFT
~Ci

π (R) for some ~Ci, respectively. If DISe(R) is simply AC-terminating or simply terminating then
so is AFTπ(R), respectively.

Proof. From Lemma 6.10 and Theorem 5.7. �

From Corollary 5.8 and Theorem 6.11, we obtain the following corollary, which is a generalization of
the known result (c) in Proposition 6.9.

Corollary 6.12 Suppose that the eliminated symbol e is not AC-symbol and the symbol e does not
occur in l for each rule l → r ∈ R.
If DISe(R) is AC-terminating then R is AC-terminating.

The assumption e 6∈ ΣAC is needed since Theorem 5.4 requires the AC-condition of π but π(e) = i for
some i = 1, . . . , arity(e) in Theorem 6.11. Hence e should be non-AC-symbol. We notice that the known
result (c) in Proposition 6.9 is a special case ΣAC = ∅ of corollary 6.12.

Unfortunately, Corollary 6.12 cannot handle known results (a) and (b) in Proposition 6.9 related to
the distribution elimination for right-linear TRSs with at most one AC-symbol. The reason is that the
distribution transformation deletes some rules, and hence delete some dependency pairs. In [21], readers
can see that we extended the notion of the argument filtering method onto AC-multiset, and discussed
why the distribution elimination with the right-linearity works well.

6.3 General Dummy Elimination

To prove termination, Ferreira introduced the general dummy elimination by placing the dummy elimi-
nation and the distribution elimination together [9].

Definition 6.13 [9](General Dummy Elimination) For any f ∈ Σ, an f-status τ satisfies τ(f) = (∅, 0)
or (J, j) with j ∈ J ⊆ {1, . . . , arity(f)}. Let e be an eliminated symbol and τ(e) = (I, i). The general

dummy elimination (GDEe) is defined as follows:

capi(t) =















t if t ∈ V

f(capi(t1), . . . , capi(tn)) if t ≡ f(t1, . . . , tn) ∧ f 6= e

capi(ti) if t ≡ e(t1, . . . , tn) ∧ i 6= 0
� if t ≡ e(t1, . . . , tn) ∧ i = 0

Ei(t) =







{t} if t ∈ V

{f(s1, . . . , sn) | sj ∈ Ei(tj)} if t ≡ f(t1, . . . , tn) ∧ f 6= e

E(ti) if t ≡ e(t1, . . . , tn)

E(t) =







{t} if t ∈ V

{cap0(t)} if I = ∅
⋃

j∈I Ej(t) if I 6= ∅

dec(t) =







∅ if t ∈ V
⋃n

j=1 dec(tj) if t ≡ f(t1, . . . , tn) ∧ f 6= e
⋃n

j=1 dec(tj) ∪
⋃

j 6∈I E(tj) if t ≡ e(t1, . . . , tn)

GDEe(R) = {capi(l) → r′ | l → r ∈ R, r′ ∈ E(r) ∪ dec(r)}

The general dummy elimination was extended to the improved general dummy elimination (IGDE)
by removing several unnecessary rewrite rules [27]. It corresponds to pickπ in the AFT .

Definition 6.14 [27](Improved General Dummy Elimination) The functions τ , capi, E and dec are
the same as that of the general dummy elimination. Let τ(e) = (I, i). The improved general dummy

12

elimination (IGDEe) is defined as IGDEe(R) = GDEe(R) if e ∈ DF (R); otherwise,

E′(t) = {s ∈ E(t) | s includes some defined symbols of R}

dec′(t) = {s ∈ dec(t) | s includes some defined symbols of R}

IGDEe(R) = {capi(l) → r′ | l → r ∈ R, r′ ∈ {capi(r)} ∪ E′(r) ∪ dec′(r)}

Example 6.15 Let t ≡ f(0, e(f(1, e(2, 3, 4)), 5, 6)) and τ(e) = ({1, 3}, 1). Then, we have E(t) =
{f(0, 6), f(0, f(1, 2)), f(0, f(1, 4))} and dec(t) = {5, 3}. If DF (R) = {f, 5} then E ′(t) = E(t) and
dec′(t) = {5}.

We introduce known results in [9, 27] related to the general dummy elimination and the improved
general dummy elimination.

Proposition 6.16 [9, 27] If GDEe(R) (or IGDEe(R)) is terminating then R is terminating.

In this subsection, we show that the general dummy elimination and the improved general dummy
elimination also work well for proving AC-termination, and provide a remarkable simple proof for its
soundness. In the following, we explain how the (improved) general dummy elimination can also be
expressed as a restricted argument filtering transformation where π(e) = [] if τ(e) = (∅, 0), or π(e) = i if
τ(e) = (I, i) (i 6= 0). Here we also regard e as � when π(e) = [].

Lemma 6.17 Let τ(e) = (I, i). We take π(e) = [] if i = 0, or π(e) = i if i 6= 0. Then AFT
~Ci

π (R) ⊆

IGDEe(R) for some ~Ci.

Proof. In the case τ(e) = (∅, 0), since GDEe = DEe(R) holds trivially, AFT
~Ci

π (R) ⊆ GDEe(R)

holds where each Ci is the trivial context �, i.e. AFT
~Ci

π = AFTπ, from Lemma 6.4. Each rule in

GDEe(R) \ IGDEe(R) is not included in AFT
~Ci

π (R) since pickπ should not pick up such rule. Hence
AFTπ(R) ⊆ GDEe(R).

Consider the case τ(e) = (I, i) with i 6= 0. For any lj → rj ∈ AFTπ(R) there exists a rule l′ →
C ′[r′] ∈ R with lj ≡ π(l′) and rj ≡ π(r′) from the definition of AFTπ. It is easily proved by induction
on C ′[] that for any r′ and C ′[], there exists a context C[] such that C[π(r′)] ∈ dec(C ′[r′]) ∪ E(C ′[r′]).

Since π(l′) ≡ capi(l
′)(≡ lj) holds too, there exists lj → Cj [rj] ∈ GDEe(R). For these ~Cj we get

AFT
~Cj

π (R) ⊆ GDEe(R). From the same reason in the above case, no rule in GDEe(R) \ IGDEe(R) is

included in AFT
~Ci

π (R). Hence AFT
~Cj

π (R) ⊆ IGDEe(R). �

Theorem 6.18 Suppose that τ(e) = (I, i). If GDEe(R) (or IGDEe(R)) is AC-terminating or terminat-

ing then so is AFT
~Ci

π (R), respectively. If GDEe(R) (or IGDEe(R)) is simply AC-terminating or simply
terminating then so is AFTπ(R), respectively.

Proof. From Lemma 6.17 and Theorem 5.7. �

From Corollary 5.8 and Theorem 6.18, we obtain the following corollary, which means that the (im-
proved) general dummy elimination also works well for proving AC-termination.

Corollary 6.19 Let τ(e) = (I, i) and either e 6∈ ΣAC or i = 0.
If GDEe(R) (or IGDEe(R)) is AC-terminating then R is AC-terminating.

Note that the assumption “e 6∈ ΣAC or i = 0” guarantees the argument filtering function π to satisfy
the AC-condition. We notice that Proposition 6.16 is a special case ΣAC = ∅ of this corollary.

Example 6.20 Consider the following TRS with ΣAC = {h}.

R3 =























f(f(x)) → f(g(f(x), x))
f(f(x)) → f(h(f(x), f(x)))

f(x) → x

g(x, y) → y

h(x, x) → g(x, 0)

13

Let π(g) = [2] and π(h) = []. Then,

AFTπ(R3) =































f(f(x)) → f(g(x))
f(f(x)) → f(x)
f(f(x)) → f(h)
f(f(x)) → x

g(y) → y

h → g(0)

The termination of AFTπ(R3) is easily proved by the recursive path order with the precedence f B h B

g B 0 [7]. From Corollary 5.5, R3 is AC-terminating. The improved general dummy elimination cannot
transform it into a simply terminating one. It means that IGDEf (R3), IGDEg(R3) and IGDEh(R3) are
not terminating for any status τ . The dummy elimination, the distribution elimination and the general
dummy elimination cannot, too. Note that the AC-termination of R3 is not easily proved, because R3 is
not simply AC-terminating.

7 Comparison of Argument Filtering Transformation

with AC-Dependency Pair Method

We have unified all the elimination transformations by the argument filtering transformation, which is
based on notions of dependency pairs and argument filterings. This naturally leads to the question of:
where is the argument filtering transformation more useful? Where is the AC-dependency pair method
more useful? In this section, we study this relationship.

7.1 AC-Dependency Pairs with Simplification Orders

In this subsection, we examine the relation of a most basic framework: for a simplification order >, the
AC-termination of R is shown as >⊇ AFTπ(R) (cf. Theorem 5.4 and Proposition 2.2) and as &π⊇ R

and >π⊇ DP #
AC

(R) (cf. Propositions 3.11 and 3.15).
For ordinary termination cases without AC-symbols, as a direct consequence of Theorem 4.2 and

Definition 3.14, we can see that the dependency pair method successfully proves termination whenever
the argument filtering transformation successfully does so. Moreover, there exists an example for which
termination can be proved by the dependency pair method but cannot be treated well by the argument
filtering transformation (described below). Giesl and Middeldorp studied the relationship more precisely
by also considering dependency graphs [12].

For AC-termination, the situation is different. Indeed, the argument filtering transformation and
the basic AC-dependency pair method are incomparable; there exists a TRS whose AC-termination can
be proved by the argument filtering transformation but cannot be proved by the AC-dependency pair
method, and vice versa. One answer is that the argument filtering transformation is more useful when
there exists a necessity of π(f) = [] for some defined AC-symbol f ; otherwise the AC-dependency pair
method is more useful.

First, we consider π(f) = [] for some defined AC-symbol f . Here the dependency pair method
always fails because this π transforms an AC-extended dependency pair 〈f(l, z)#, f(r, z)#〉 into 〈f#, f#〉.
Trivially, f# ≯π f# for any > and π. Note that π(f) = [] requires π(f#) = [] to ensure the AC-marked
condition. Hence, in these cases the argument filtering transformation is more useful than the dependency
pair method. The following example is a typical case:

Example 7.1

R4 =







f(f(x)) → f(h(f(x), f(x)))
f(x) → x

h(x, x) → a

Let π(h) = []. Then,

AFTπ(R4) =















f(f(x)) → f(h)
f(f(x)) → f(x)

f(x) → x

h → a

14

The termination of AFTπ(R4) is easily proved by the recursive path order with the precedence f B h B a

[7]. Hence the AC-termination of R4 follows from Corollary 5.5.

Next we consider π(f) = [1, 2] for all defined AC-symbols. Here, if the argument filtering trans-
formation successfully proves the AC-termination of TRS R by an AC-compatible simplification order,
then the dependency pair method also successfully proves AC-termination by the same simplification
order because π(R) ∪ π(DP (R)) v AFTπ(R). Again we ask a natural question: in what cases is the
AC-dependency pair method strictly more useful? To answer this, we prepare an abstract theorem.

Theorem 7.2 Suppose that π(R) ∪ π(DP (R)) v R′ and π(f) = [1, 2] for all f ∈ ΣAC ∩ DF (R). If
R ∪ DP (R) is not AC-terminating, then R′ is not simply AC-terminating.

Proof. Assume that R′ is simply AC-terminating. We define > as
+

−−−→
R′

∪Emb/AC

. The AC-termination of

R′ ensures that > is an AC-compatible simplification order. It is trivial that π(RD) ∪ π(DP (RD)) v R′

where RD = R ∪ DP (R). Thus, l &π r for all l → r ∈ RD and u >π v for all 〈u, v〉 ∈ DP (RD). For any
extended unmarked dependency pair 〈f(l, z), f(r, z)〉, it follows that π(f(l, z)) ≡ f(π(l), z) > f(π(r), z) ≡
π(f(r, z)). From Proposition 3.7, RD is AC-terminating. It is a contradiction. �

In the case of π(f) = [1, 2] for each defined AC-symbol f , this theorem means that if R∪DP (R) is not
AC-terminating, then AFTπ(R) is not simply AC-terminating because π(R) ∪ π(DP (R)) v AFTπ(R).
Hence the argument filtering transformation with AC-compatible simplification orders always fails to
prove AC-termination. We give the following example such that R is AC-terminating but R ∪ DP (R) is
not.

Example 7.3 Let R5 be the following TRS with ΣAC = {h}.

R5 =







f(a) → f(b)
b → g(h(a, a), a)

h(x, x) → x

DP (R5) =







f(a) → f(b)
f(a) → b

b → h(a, a)

From f(a)→
R5

f(b) →
DP (R5)

f(h(a, a))→
R5

f(a), R5 ∪ DP (R5) is not AC-terminating. Hence, from Theorem

7.2, the argument filtering transformation with AC-compatible simplification orders always fails to prove
the AC-termination. On the other hand, the AC-dependency pair method succeeds to prove the AC-
termination. In fact, we suppose that π(g) = [], and > is the recursive path order with flattening based
on the precedence b# B a B b B g and f# B b# B h# [5]. Then l &π r for all l → r ∈ R, and u# >π v# for
all 〈u#, v#〉 ∈ DP #

AC(R). From Proposition 3.7, we succeed to prove the AC-termination of R.

The AC-dependency method succeeds but the argument filtering transformation fails in this example
because of the mark of function symbols. Because of the marks, a function symbol and the marked one
can be used as different function symbols, such as b# B a B b B g.

7.2 AC-Dependency Pairs with Advanced Methods

We have seen that the argument filtering transformation is more useful if there exists a necessity of
π(f) = [] for some defined AC-symbol f . For example, both AC-terminations of TRSs R3 (Example
6.20) and R4 (Example 7.1) are easily proved by the argument filtering transformation; however, these
AC-terminations are difficult to be proved by using the AC-dependency pair method, as defined in
Proposition 3.15.

On the other hand, Proposition 3.15 is the most basic version of the AC-dependency pair method. By
using more advanced refinements, the AC-dependency pair method can be improved. Examples for such
refinements are methods based on dependency graphs [1, 2, 3, 15, 26] and criteria for CE-termination for
hierarchical unions [16, 24, 31, 32, 33, 34]. These methods have already been implemented in AProVE
[17] and CiME [6], which to the best of our knowledge are the most powerful automatic provers for
AC-termination. We can prove the AC-termination of R3 and R4 by the AC-dependency pair method
with these advanced methods. Actually, AProVE and CiME can prove the AC-termination of R3 and R4

because such advanced methods remove the necessity of π(h) = []. Under which condition can we remove
the necessity of π(h) = [] for each defined AC-symbol h? This is a very difficult question. Finally, we
show a TRS in which it is very difficult to remove the necessity of π(h) = [] for some defined AC-symbol
h.

15

Example 7.4 Let R6 be the following TRS with ΣAC = {h}.

R6 =















f(f(s(x))) → f(h(f(s(x)), x))
f(h(x, y)) → h(x, y)

h(x, y) → g(0)
g(x) → f(f(x))

Let π(h) = []. Then,

AFTπ(R6) =































f(f(s(x))) → f(h)
f(f(s(x))) → f(s(x))

f(h) → h

h → g(0)
g(x) → f(f(x))
g(x) → f(x)

The termination of AFTπ(R6) is easily proved by the recursive path order with the precedence s B h B

0 B g B f [7]. Hence the AC-termination of R6 follows from Corollary 5.5.

In this example, the choice π(h) = [] for a defined AC-symbol h strongly supports the proof of AC-
termination by the argument filtering transformation. AProVE and CiME, the prover of which is based
on the AC-dependency pair method, failed to prove the AC-termination. They could not choose π(h) = []
because such π interprets the AC-extended dependency pair 〈h#(h#(x, y), z), h#(g(0), z)〉 into 〈h#, h#〉.
Note that the argument filtering transformation do not need to analyze AC-extended dependency pairs.

8 Concluding Remarks

Elimination Transformations: In Section 6, we unified all elimination transformations by compar-
ing them with corresponding restricted argument filtering transformations. We summarize that each
elimination transformation is expressed as a restricted argument filtering transformation (Fig. 1), with e

denoted as the eliminated symbol.

Dummy Elimination (DEe)

π(f) =

{

[] if f = e

[1, . . . , arity(f)] if f 6= e

Distribution Elimination (DISe)

π(f) =

{

i if f = e

[1, . . . , arity(f)] if f 6= e

where i is an arbitrary number such that 1 ≤ i ≤ arity(e).

(Improved) General Dummy Elimination with τ(e) = (I, i) ((I)GDEe)

π(f) =







[] if f = e ∧ i = 0
i if f = e ∧ i 6= 0
[1, . . . , arity(f)] if f 6= e

AC-dependency Pair Method and Argument Filtering Transformation: We summarize the
discussion in Section 7 that compares the argument filtering transformation and the AC-dependency pair
method.

When π(h) = [] for some defined AC-symbol h:
The argument filtering transformation is more useful than the AC-dependency pair method. Indeed,
the basic AC-dependency pair method always fails to prove the AC-termination (cf. the discussion
above Example 7.1). Moreover, there exist some TRSs for which AC-termination can be proved
by the argument filtering transformation, but cannot be proved by existing tools based on the
AC-dependency pair method with advanced methods (cf. Example 7.4).

One advantage of the argument filtering transformation is its ability to ignore AC-extended depen-
dency pairs to prove AC-termination (Theorem 4.2).

16

PSfrag replacements DEe DISe

GDEe

IGDEe

AFTπ

Example 6.20

Figure 1: Relation among elimination transformations

When π(h) = [1, 2] for each defined AC-symbol h:
The AC-dependency pair method is more useful than the argument filtering transformation. In-
deed, the AC-dependency pair method successfully proves AC-termination whenever the argument
filtering transformation succeeds. The argument filtering transformation cannot prove the AC-
termination of R such that R ∪ DP (R) is not AC-terminating (cf. Example 7.3).

One advantage of the AC-dependency pair method is its ability to mark function symbols.

As seen above, if we can efficiently remove the necessity of π(f) = [] for any defined AC-symbol h,
then there exists no advantage for the argument filtering transformation. For example, although the
AC-termination of TRSs R3 (Example 6.20) and R4 (Example 7.1) can easily be proved by the argument
filtering transformation with π(h) = [], we can also prove it by the AC-dependency pair method to remove
the necessity of π(h) = [] using suitable advanced methods. Actually, the AC-termination of R3 and R4

can be proved by AProVE and CiME. However, the AC-termination of R6, which is more a complicated
system, could not be proved by AProVE and CiME. It is future work to investigate in what cases we can
remove the necessity of π(h) = [] for each defined AC-symbol h, and what costs are required to remove
it.

Others: Recent years have seen vigorous research on techniques for automated (AC-)termination
proofs. As improvements of the dependency pair method other than dependency graphs and CE-
termination for hierarchical unions, we have lexicographic argument filtering [21], modularity [15, 31],
transforming dependency pairs [16], and so on. One area of future work will include comparing these
improvements with the argument filtering transformation.

References

[1] T.Arts, Automatically Proving Termination and Innermost Normalization of Term Rewriting Sys-
tems, Ph.D. thesis, Utrecht University, 1997.

[2] T.Arts, J.Giesl, Automatically Proving Termination where Simplification Orderings Fail, In Proc. of

7th Int. Joint Conf. on Theory and Practice of Software Development, LNCS 1214 (TAPSOFT’97),
pp.261–272, 1997.

[3] T.Arts, J.Giesl, Termination of Term Rewriting Using Dependency Pairs, Theoretical Computer

Science, Vol. 236, pp.133–178 (2000).

[4] F.Baader, T.Nipkow, Term Rewriting and All That, Cambridge University Press, 1998.

[5] T.Bachmair, D.A.Plaisted, Termination Orderings for Associative-Commutative Rewriting Systems,
J.Symbolic Computation, Vol. 1, pp.329–349, 1985.

17

[6] E.Contejean, C.Marché, B.Monate and X.Urbain, CiME version 2, 2000. (Available at
http://cime.lri.fr/)

[7] N.Dershowitz, Orderings for Term-rewriting Systems, Theoretical Computer Science, Vol. 17, pp.279–
301, 1982.

[8] M.Ferreira, H.Zantema, Dummy Elimination: Making Termination Easier, In Proc. of 10th Int.

Conf. on Fundamentals of Computation Theory, LNCS 965 (FCT’95), pp.243–252, 1995.

[9] M.Ferreira, Termination of Term Rewriting, Well-foundedness, Totality and Transformations, Ph.D.
thesis, Utrecht University, 1995.

[10] M.Ferreira, D.Kesner, L.Puel, Reducing AC-Termination to Termination, In Proc. of 23rd Int. Symp.

on Mathematical Foundations of Computer Science, LNCS 1450 (MFCS’98), pp.239–247, 1998.

[11] J.Giesl, E.Ohlebusch, Pushing the Frontiers of Combining Rewrite Systems Farther Outwards, In
Proc. of 2nd Int. Workshop on Frontiers of Combining Systems (FroCos ’98), Amsterdam, The
Netherlands, Studies in Logic and Computation 7, pp.141–160, Research Studies Press, John Wiley
& Sons (2000).

[12] J.Giesl, A.Middeldorp, Eliminating Dummy Elimination, In Proc. of 17th Int. Conf. on Automated

Deduction, LNAI 1831 (CADE2000), pp.309–323, 2000.

[13] J.Giesl, D.Kapur, Dependency Pairs for Equational Rewriting, In Proc. 12th Int. Conf. on Rewriting

Techniques and Applications, LNCS 2051 (RTA’01), pp.93–107, 2001.

[14] J.Giesl, T.Arts, Verification of Erlang Processes by Dependency Pairs, Applicable Algebra in Engi-

neering, Communication and Computing, 12(1,2):pp.39–72, 2001.

[15] J.Giesl, T.Arts, E.Ohlebusch, Modular Termination Proofs for Rewriting Using Dependency Pairs,
Journal of Symbolic Computation, 34(1):pp.21–58, 2002.

[16] J.Giesl, R.Thiemann, P.Schneider-Kamp, S.Falke, Improving Dependency Pairs, In Proc. of 10th

Int. Conf. on Logic for Programming Artificial Intelligence and Reasoning, LNAI 2850 (LPAR03),
pp.165–179, 2003.

[17] J.Giesl, R.Thiemann, P.Schneider-Kamp, S.Falke, Automated Termination Proofs with AProVE, In
Proc. of 15th Int. Conf. on Rewriting Techniques and Applications, LNCS 3091 (RTA04), pp.210–220,
2004.

[18] N.Hirokawa, A.Middeldorp Automating the Dependency Pair Method, Information and Computation

199(1,2), pp.172–199, 2005.

[19] J.W.Klop, Term Rewriting Systems, Handbook of Logic in Computer Science II, pp.1–112, Oxford
University Press, 1992.

[20] M.Kurihara, A.Ohuchi, Modularity of Simple Termination of Term Rewriting Systems with Shared
Constructors, Theoretical Computer Science, vol.103, pp.273–282, 1992.

[21] K.Kusakari, Y.Toyama, On Proving AC-Termination by Argument Filtering Method, IPSJ Trans-

actions on Programming Vol.41, No.SIG 4 (PRO 7), pp.65–78, 2000.

[22] K.Kusakari, Y.Toyama, On Proving AC-Termination by AC-Dependency Pairs, IEICE Transactions

on Information and Systems, Vol.E84-D, No.5, pp.604–612, 2001.

[23] C.Marché, X.Urbain, Termination of Associative-Commutative Rewriting by Dependency Pairs, In
Proc. of 9th Int. Conf. on Rewriting Techniques and Applications, LNCS 1379 (RTA’98), pp.241–255,
1998.

[24] C.Marché, X.Urbain, Modular and Incremental Proofs of AC-Termination, Journal of Symbolic

Computation 38(1),pp.873–897, 2004.

[25] A.Middeldorp, H.Ohsaki, H.Zantema, Transforming Termination by Self-Labeling, In Proc. of 13th

Int. Conf. on Automated Deduction, LNCS 1104 (CADE-13), pp.373–387, 1996.

18

[26] A.Middeldorp, Approximating Dependency Graphs using Tree Automata Techniques, In Proc. of

the Int. Joint Conf. on Automated Reasoning, LNAI 2083 (IJCAR01), pp.593–610, 2001.

[27] M.Nakamura, K.Kusakari, Y.Toyama, On Proving Termination by General Dummy Elimination,
IEICE Transactions on Information and Systems, vol. J82-D-I, No.10, pp.1225–1231, 1999. (in
Japanese)

[28] E.Ohlebusch, Advanced Topics in Term Rewriting, Springer-Verlag, 2002.

[29] H.Ohsaki, A.Middeldorp, J.Giesl, Equational Termination by Semantic Labeling, In Proc. of 14th

Annual Conf. of the European Association for Computer Science Logic, LNCS 1862 (CSL’00),
pp.457–471, 2000.

[30] Terese, Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Science, Vol.55, Cam-
bridge University Press, 2003.

[31] R.Thiemann, J.Giesl, P.Schneider-Kamp, Improved Modular Termination Proofs Using Dependency
Pairs, In Proc. of the 2nd Int. Joint Conf. on Automated Reasoning, LNAI 3097 (IJCAR2004),
pp.75–90, 2004.

[32] X.Urbain, Automated Incremental Termination Proofs for Hierarchically Defined Term Rewriting
Systems, In Proc. of 10th Int. Joint Conf. on Automated Reasoning, LNAI 2083 (IJCAR’01), pp.485–
498, 2001.

[33] X.Urbain, Approche Incrémentale des Preuves Automatiques de Termination, Ph.D. Thesis, Univer-
sité Paris-Sud, 2002.

[34] X.Urbain, Modular & Incremental Automated Termination Proofs, Journal of Automated Reasoning

32(4), pp.315–355, 2004.

[35] H.Zantema, Termination of Term Rewriting: Interpretation and Type Elimination, Journal of Sym-

bolic Computation 17, pp.23–50, 1994.

19

